| How to cooling a beer in refrigerator                           |                                                       |                  | Four equations who I states<br>the cooling formula ekv(4). If<br>you differentiate the temp T1                               |  |
|-----------------------------------------------------------------|-------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| $A := .05^2 \pi \cdot 2 + $                                     | $.05 \cdot \pi \cdot 2 \cdot .25$ The area on beer    | with re          | espect to time, you get                                                                                                      |  |
| cp := 4225                                                      | Specific captivity in the beer                        | the be           | the beer, set eqv (2) = eqv (3) .<br>And you got eqv (4). This<br>principle I<br>believe you can attach on<br>radiation too. |  |
| $\alpha := 5.8$                                                 | Convection constant                                   | princi           |                                                                                                                              |  |
| m := 0.5                                                        | Mass of the beer                                      | believ<br>radiat |                                                                                                                              |  |
| $k := \frac{\alpha \cdot A \cdot 3600}{cp \cdot m}  \mathbf{t}$ | Calculation a constant 3600 gives<br>he time in hours |                  |                                                                                                                              |  |
|                                                                 |                                                       | (1)              | $\Delta Q = m \cdot cp \cdot \Delta T$                                                                                       |  |
| T0 := 20 Tem                                                    | perature of the beer                                  |                  | ΔΤ1                                                                                                                          |  |
| Tmin := 3 Te                                                    | Temperature of the                                    | (2)              | $P = m \cdot cp \cdot \frac{\Delta T}{\Delta t}$                                                                             |  |
| refrigerato                                                     | frigerator                                            | (3)              | $P = \alpha \cdot A \cdot (T2 - T1)$                                                                                         |  |
| Given                                                           |                                                       | (4)              | T1' = $\frac{\alpha \cdot A}{m \cdot cp} \cdot (T2 - T1)$                                                                    |  |

 $\frac{d}{dt}T(t) = k \cdot (Tmin - T(t))$ The differential equation, a linjear diff of first order..

| T(0) = T0           | The initial temp of the beer      |
|---------------------|-----------------------------------|
| T := Odesolve(t, 4) | Solves the equation about 4 hours |

