THIS IS AN EXAMPLE OF CALCULATING A ROCKET MOTOR

F := 50000 m := 80	Drag force in (N) Mass flow (kg/s) $F = m \cdot c2$	
p2 := 101325 T2 := 273 ρ := 1.3 cp := 1000 χ := 1.4	Atmosphere pressure (Pa) Temperature in the air (K) Density air(kg/m3) Specific heat capacity for air Kappa for air	
▶ CALCULATION	S	
$p1 = 6.699 \times 10^{5}$	Pressure in the heat chamber (Pa)	
T1 = 468.313	Temperature in the heat chamber (K)	
c2 = 624.769	Speed on the gas (m/s) (must be greater than the air speed)	
D1 = 284.948	Diameter at the beginning of the thrust nozzle (mm)	
D2 = 354.135	Diameter at the end of the thrust nozzle (mm)	
L = 439.55277	The length at the thrust nozzle with an expansion angle of 9 deg (mm)	

If you got a low mass flow and you compensated it with a high gas speed at the end of the rocket nozzle, you can minimise the weight on the rocket, and you get a higher effenciy on the rocket. $F=m^*c^2$, a low m and a greater c2 and you got the same drag force.

CALCULATION WITH ANOTHER SPEED C2

MassShuttle := 1000	Mass of the shuttle in (kg)
MassFuel := 3000	Mass of the Fuel in (kg)
DragForce := 10000	The drag force for the shuttle in (N)
c2 := 2000	The new thrust nozzle speed (m/s)

CALCULATIONS -

Recalculates the mass flow and drag force with respect to that the shuttle loses in weight.

DForce = 16326.5	The dragging force (N)
MFlow = 8.163	The new mass flow (kg/s)
SFWeight = 1306.12	Total weight of fuel + the shuttle (kg)

A calculation of this example above, leads to that you can reduce the fuel about 90% if you rises the speed c2 to 2000 m/s. The mass flow is 8.2 kg/s (10%) and the F=16327 N. I suppose that the shuttle is weighting about 1000 kg and that the fuel reduces with 2700 kg (90%) and the acceleration is still about 2.5 m/s^2. With this example I want to show that you can decrease the fuel with maybe 90% of the today space shuttle. Only working with increasing c2 and decrease massflow.

Bengt-Olof Drugge